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Abstract

Background: One of the major tenets in breast cancer research is that early detection is vital for patient survival by
increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of
genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined
three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-
regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene
signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and
118 samples, respectively.

Methods and Findings: Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient
datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis
signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively
(Kaplan-Meier survival analysis, p,0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p,0.0001), 2.4 (95% CI
1.6 to 3.6, p,0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when
corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-
positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes
that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER2
patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p,0.05). Multivariable Cox regression analysis in the largest
dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome.

Conclusions: The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic
value for both ER-positive and ER-negative breast cancer. The signature was selected using a novel biological approach and
hence holds promise to represent the key biological processes of breast cancer.
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Introduction

Breast cancer ranks as the second leading cause of death among
women with cancer in the US. Early detection of breast cancer has
a significant impact on patient survival, though a portion of
patients still relapse and rapidly develop a more aggressive form of
disease [1]. The identification of individuals with a high risk of
relapse has become a primary focus of cancer research. Key steps
are determining which patients will benefit from standard care
therapies and assessing their chances of disease progression.
Accurate identification of high-risk genes may not only lead to the
identification of groups of high-risk patients, but also to the
discovery of novel therapeutic molecular targets.

Several large studies have been performed to identify predictive
gene-signatures and have shown the value of incorporating these
signatures to evaluate clinical prognosis in breast cancer [2,3].
Most gene-signatures have been selected using supervised methods
applied to training sets of about 50–100 patients, and then
confirmed in larger related sets ranging from 100–300 patients.
Surprisingly little overlap has been between the individual genes
that comprise signatures identified in different studies. Investiga-
tions addressing this lack of overlap, have found that predictive
signatures are highly dependent on the specific set of patients that
make up the training set [4]. Such disparity in signatures is not
limited to breast cancer, but also has been found in schizophrenia
studies. Less well studied is whether a given predictive signature
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that has been identified using a given dataset is also predictive in
additional unrelated datasets.
Two predictive signatures for breast cancer identified by

microarray analysis have been further developed into clinical
multi-gene panel tests [5]. MammaPrint became the first test
approved by the FDA for predicting breast cancer relapse and is
composed of 70 genes. Oncotype DX, a prognostic test for ER
positive breast cancers, has been commercially available since
2004 and is composed of 21 genes. The 70-gene signature was
identified by analyzing the large NKI dataset of van de Vijver et
al. Unfortunately, subsequent analysis found that this signature did
not predict outcome as well in an independent dataset [6]. Several
clinical trials are ongoing to test the utility of these prognostic
gene-signature tests [7].
Even though gene signatures so far have been helpful for

identifying patients at risk, they provide limited information on
which genes are relevant to breast cancer biology. It follows that
all genes included in gene-signatures cannot be key biological
players in cancer progression. We hypothesize that the ability of a
signature to demonstrate predictive power across different
independent datasets tends to support the conclusion that it is
composed of key, biologically relevant genes. The development of
novel, biologically-based gene selection approaches may help to
find these genes. We applied an unsupervised approach that is not
dependent on the composition of a training set. The approach is
based on a well-studied and biologically relevant model system
that mimics cellular characteristics of human mammary gland.
Since the genes are selected based on a biological parameter, they
hold promise to represent key biological processes of cancer.
To select a prognostic signature, we used a 3D culture model of

non-malignant human mammary epithelial cells (HMEC) [8].
When cultured in laminin-rich extracellular matrix, non-malig-
nant HMEC reacquire the ability to form acini-like structures
presenting a hollow lumen, basal polarity and cell cycle arrest.
These structures recapitulate many of the characteristics of
luminal cell differentiation in the mammary gland [9,10]. We
hypothesized that gene expression associated with acini formation
are opposite from those occurring during the development of
breast tumors with a poor prognosis. Here we describe the
predictive power of a small set of 22 genes that were down-
regulated during growth arrest and acini formation of HMEC in
3D cultures (3D-signature) in three large, independent breast
cancer microarray datasets.

Materials and Methods

Dataset sources
The van de Vijver dataset, with profiles of 295 human breast

tumors and associated clinical data [11], was obtained from
Rosetta Inpharmatics (http://www.rii.com/publications/2002/
nejm.html). Downloaded log base 2 data were transformed to
linear values and uploaded to GeneSpring GX 7.3 (Agilent
Technologies), which transforms to and uses natural log (log e) for
all functions. The arrays and genes were normalized to the median
of chips and genes. All data processing steps were performed using
GeneSpring GX 7.3 software. The Wang dataset, consisting of the
microarray profiles of 286 human breast tumors with associated
clinical data [12], was obtained from GEO (Series GSE2034). The
downloaded data were transformed to set measurements less than
25 to 25, chips and genes were median normalized and median
polished. The Sorlie dataset, with microarray profiles of 118
human breast tumors, 4 non-malignant breast samples, and
associated clinical data [13], was obtained from GEO (Series
4335). These samples represented a number of different platforms;

all platforms were translated to a single dataset for analysis. Log
base 2 data were downloaded, transformed to linear, uploaded to
GeneSpring GX 7.3 and then chips and genes were median-
normalized. Data for at least 40% of the Sorlie, et al., patients
were available for 15 of the 3D-signature genes. The gene CEP55
was the gene with the least complete data that was retained for the
analysis. For this gene n= 47. For other genes, more complete data
were available. Several genes had complete data, n= 118. The
missing patients were not consistent across the dataset. The gray
blocks of the diagram of Figure 1C show the patients/genes where
data was not available. The incompleteness of this dataset likely
had an impact on reducing the significance of the results relative to
the two larger and more complete datasets. Data for the first ten
patients of Desmedt et al [14] were obtained from GEO record
GSE7390.
Hierarchical cluster analysis and PCA were performed using

GeneSpring GX 7.3. All metrics were applied to log e transformed
gene expression data. Median normalized gene expression levels
for the 3D signature for the Sorlie dataset ranged from a minimum
of 0.015 to a maximum of 41, with a standard deviation of 1.79.
For the Wang dataset, levels ranged from a minimum of 0.047 to a
maximum of 23, with a standard deviation of 1.02. The clustering
metric for the Wang dataset was a Pearson correlation in the genes
direction and a smooth correlation in the sample direction. The
Sorlie metric was a Pearson metric in both directions. Metrics that
gave the best visual separation of expression patterns were used.
PCA was performed on the sample direction using the 275 patients
of the dataset of Wang, et al., for which at least 5 years of follow up
data were available. GeneSpring GX 7.3 default parameters,
including mean centering and scaling, were applied.

Survival analysis
Kaplan-Meier and Cox proportional hazards analyses were

computed using MedCalc version 9.3.9.0 (http://www.medcalc.
be/). For Kaplan-Meier analysis of the individual signature genes,
patients were stratified into quartiles for expression of each marker
and survival curves were computed. For Cox proportional hazards
analysis, all variables were entered into the model in a single step.
The Chi-squared statistic was used to assess the relationship
between time and all covariates in the model and the significance
level (p) was ,0.05 for all tests reported. For the dataset of van de
Vijver etal., overall survival was used as an endpoint and 295
patients were included in the analysis. For the dataset of Wang et
al., relapse was used as an endpoint and 286 patients were
included in the analysis. For the dataset of Sorlie et al., relapse was
used as an endpoint and 118 patients were included in the analysis.

ER+/2 comparison
ER status was clinically determined for the Wang, Sorlie, and

van de Vijver datasets. Numbers of patient samples included in
this study for the Sorlie dataset were ER negative n= 31, ER
positive n= 81. The remaining 9 patients with unknown status
were not included. For the Wang dataset, ER negative n = 77, ER
positive n= 209. For the van de Vijver dataset, ER negative
n = 69, ER positive n= 226. Welch t-tests were performed using
GeneSpring GX 7.3 to compare log e transformed expression
levels of the 3D signature genes in ER positive versus ER negative
tumors samples. A Benjamini and Hochberg false discovery rate
multigene correction was applied.

Results

We have previously used a novel unsupervised approach to
identify a set of 22 genes that predict prognosis of breast cancer

Prognostic 3D-Signature
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patients [8]. This signature included genes that were down-
regulated during breast epithelial cell acinar formation in 3D
cultures in laminin-rich extracellular matrix (3D lrECM).
Identities, Affymetrix IDs, GeneBank accession numbers, and
biological functions of these genes are tabulated (Table S1).
To further assess the utility of this 3D-signature, we have used

three large independent breast cancer microarray datasets, which
include annotated microarray data and associated clinical
information. The dataset of Wang et al., includes data from 286
breast cancer patients while that of Sorlie, et al. (Stanford/Norway)
includes data from 118 breast cancer patients, and 4 normal breast
tissue samples. Our previous studies of the 3D-signature made use
of the dataset 295 patients of van de Vijver, et al., but did not
evaluate prognostic accuracy [8]. This dataset is further evaluated
here. Together these datasets represent a total of 699 patients.
Numerous differences exist between the datasets. Most notably,
the patients were selected by different institutions using different
admittance criteria. Database criteria are tabulated (Table S2).

For each of the datasets, we used expression patterns of the 3D
signature genes and unsupervised hierarchical cluster analysis to
group tumors into classes. The clustering algorithm divided the
patients into groups based on the expression patterns of the 3D
signature. Patients were not selected based on any clinical
parameters at any step. Probes for all 22 genes were present on
the Affymetrix HG-U133A microarrays used by Wang, et al.
Hierarchical cluster analysis using these genes resulted in two
distinct main clusters (Figure 1A), which were used for further
analysis. Kaplan-Meier analysis was performed using relapse as an
endpoint. The two clusters were highly significantly associated
with prognosis (p = 0.000013, Kaplan-Meier) (Figure 1 A, B). At
10 years, the probability of positive outcome was 50.9 +/2 4.1
percent in the group with a poor-prognosis signature and 74.6+/2
3.8 percent in the group with a good-prognosis signature.
Using the same approach, we also tested the dataset of Sorlie, et

al. This dataset used Stanford two-color spotted microarrays of
varying formats. Data for at least 40% of patients were available

Figure 1. The 22 gene 3D signature predicts survival in the microarray datasets of Wang, et al., and Sorlie, et al. The 22 gene signature
and unsupervised hierarchical clustering grouped breast cancer patients to accurately reflect overall relapse or survival when analyzed by the method
of Kaplan and Meier. A. Hierarchical cluster analysis of the dataset of Wang, et al. The pattern of expression of the 22 genes selected by the 3D assay
are shown for the 286 breast cancer patients of Wang, et al. Genes and samples were organized by using hierarchical clustering. The two major
clusters in the sample dimension (red cluster and yellow cluster), were found by using survival analysis to distinguish between good and poor
prognosis patients (p,0.0001). B. Kaplan-Meier curves for the red and yellow clusters of the hierarchical diagram of panel A. The endpoint recorded
for this dataset was relapse, measured in months. C. Hierarchical cluster analysis of Sorlie, et al. dataset. The pattern of expression of the 15 of 22
genes with probes on the Stanford microarrays and with data available for at least 40% of patients are shown for the 121 breast cancer patients
reported by Sorlie, et al. Expression was organized by hierarchical clustering. The two major clusters in the sample dimension (red cluster and yellow
cluster), were found by using survival analysis to distinguish between good and poor prognosis patients (p = 0.00447). D. Kaplan-Meier curves for the
red and yellow clusters of the hierarchical diagram of panel C. The endpoint recorded for this dataset was death, measured in months.
doi:10.1371/journal.pone.0002994.g001
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for 15 of the 3D-signature genes. Hierarchical cluster analysis
using these 15 genes resulted in four main clusters (Figure 1C).
These were grouped into the two left clusters and the two right
clusters for further analysis. A visual inspection of the gene
expression patterns for both datasets showed that low expressing
(blue) genes tended to be on the left and high expressing (red)
genes tended to be on the right. Kaplan-Meier analysis was
performed using patient death as an endpoint. Results showed that
the two clusters were significantly associated with prognosis
(p = 0.045, Kaplan-Meier) (Figure 1 C, D). At 10 years, the
probability of positive outcome was 46.7 +/2 8.8 percent in the
group with a poor-prognosis signature and 71.4 +/2 6.7 percent
in the group with a good-prognosis signature.
Probes for 18 genes of the 3D signature genes were present on

the microarrays used by van de Vijver, et al., and we have
previously shown that hierarchical cluster analysis separated the
patients into five main clusters (Figure S1). Here we analyze these
individually and also group them into the two left clusters and the
three right clusters and perform Kaplan-Meier analysis of these
clusters using overall survival as an endpoint. For both the five-
cluster and the two-cluster analyses, the individual groups were
highly significantly associated with prognosis (p = 1.04E-08 and
9.41E-10, for the five-cluster and two-cluster analyses, respectively)
(Figure S1). At 10 years, the probability of positive outcome was
52.5+/24.8 percent in the group with a poor-prognosis signature
and 90.8 +/22.3 in the group with a good-prognosis signature.
To test the ability of the method to predict the outcome of newly

added individual patients, we tested individual patients from a
fourth, unrelated dataset. Ten patients from the dataset of
Desmedt, et al., [14] (patients 1–10) were mapped onto the most
similar patient profile of the clustered Wang dataset. Both of these
datasets include breast cancer biopsy samples analyzed with
Affymetrix HG-U133A GeneChips. Mapping was performed
using a Pearson correlation metric to compare the expression
levels of the 3D signature genes of a new patient with all 286
patients of the previously clustered Wang dataset. Correlation
coefficients for the ten patients ranged from 0.53 to 0.75. Four of
the ten patients mapped to the good prognosis cluster and six to
the poor prognosis cluster. Only one the four experienced a
relapse within 10 years of follow up (relapse times were 10.5, 1.2,
.17.8, and .16.5 years). Of the six that mapped to the poor
prognosis cluster, five relapsed within 10 years (relapse times were
6.0, 15.9, 2.0, 0.5, 1.4, and 1.9 years). Though this study was too
small to obtain statistics, it supports the conclusion that the 3D
signature and hierarchically clustered data can be used for the
prediction of individual patients.
To test the statistical validity of the groups identified by the 3D

signature, we have used principle component analysis (PCA). PCA
allows for the reduction of data complexity by discovering a
number of principal components that define most of the data
variability. PCA was applied on the 275 patients of the dataset of
Wang, et al., for which at least 5 years of follow up data were
available. Nine principle components were identified representing
78.1 percent of the variability (data not shown). The major
component, principle component 1, represented 33.5 percent of
the variability. PCA scores were calculated by computing the
standard correlation between the expression profile vector of each
patient sample and the principal component 1 vector. Calculating
scores in this manner results in values between 21 and 1. In the
case of n = 275, PCA scores greater than 0.0118 are significantly
positively correlated with the component, while scores less than
20.0118 are significantly negatively correlated (p,0.05). 61 of the
95 (64%) patients who relapsed within 5 years had a significant
positive score and 107 of the 180 (59%) patients who did not

relapse within 5 years had a significant negative score. A positive
score was strongly associated with relapse (p = 0.00014) and a
negative score was strongly associated with relapse-free survival
(p = 0.000018) (Fisher’s exact tests). These results show that the
expression patterns of the 3D signature separate breast cancer
patients into statistically significant prognosis groups.
To begin to address the biology of this system, we tested the

ability of each individual gene of the 3D-signature to predict
patient survival or relapse . For the Wang dataset, the expression
levels of nine genes were significant predictors of a patient’s time to
relapse (p,0.05, Kaplan-Meier analysis) (Figure 2A). These
genes included ASPM, AURKA, ACTN1, CEP55, CKS2,
DUSP4, EPHA2, TRIP13, and VRK1. For each of these genes
except DUSP4, poor prognosis tumors with a short time to relapse
were associated with a higher level of gene expression. For
DUSP4, the pattern was reversed and poor prognosis was
associated with a lower level of expression. For the Sorlie dataset,
expression levels of seven genes were significant predictors of
survival time (Figure 2B). These genes included AURKA,
CDKN3, CEP55, FOXM1, RRM2, TRIP13, and VRK1. For
all of these genes, poor prognosis was associated with a higher level
of gene expression. Kaplan-Meier p-values are summarized in
Table 1, which also lists our previously determined p-values from
the van de Vijver dataset for comparison. The results show that
41% (9 of 22), 39% (7 of 18), and 68% (13 of 19) of the genes were
significant individual predictors in the Wang, Sorlie, and van de
Vijver datasets, respectively (Table 1).
Table 1 groups the 3D-signature genes by the biological

process in which they participate. Group assignments were made
using information from GO biological process terms, UniProt-
SwissProt function, or literature searching. The genes include five
categories: cell cycle/mitosis, motility/angiogenesis, polyamine
biosynthesis, transcription/replication genes, and one gene of
unknown function.
We have also looked at the ability of the individual genes to

predict prognosis in ER+ and ER2 subsets of patients. Table 1
lists Kaplan-Meier p-values for ER+ and ER2 tumors for all three
datasets. A notable finding among the ER related differences was
that the genes that tended to associate with prognosis in ER+
patients had different molecular functions than the genes that
tended to associate with prognosis in ER2 patients. In particular,
significantly more cell cycle and transcription genes were
prognostic markers for ER+ tumors (Fisher’s exact test,
p = 0.0047), while prognostic markers of ER2 tumors were
significantly more likely to have functions related to angiogenesis
and metastasis (Fisher’s exact test, p = 0.023). This analysis
considered results from all three of the datasets. The genes that
tended to associate with prognosis in ER+ tumors (p,0.1 for at
least one of the three datasets) included AURKA, CDKN3,
CEP55, DUSP4, NCAPG, RRM2, ACTB, EPHA2, FGFBP1,
TNFRSF6B, EIF4A1, and VRK1 (Table 1). Genes that tended to
associate with prognosis in ER2 tumors included TUBG1, ACTB,
FGFBP1, FOXM1, SERPINE2, and TNFRSF6B. Genes that
were markers for prognosis in both ER+ and ER2 tumors included
ACTB, FGFBP1, and TNFRSF6B. We note that caution is needed
in interpreting these results as the data set included relatively small
numbers of both genes and patients in the various subsets. In
particular, the lack of significant Kaplan-Meier p-values among cell
cycle and transcription related genes for ER2 patients could be
explained by the low patient numbers. Ideally, this comparison
would have equivalent patient numbers for both ER subsets.
We have also found a statistical association between expression

of the individual 3D-signature genes and tumor ER status, though
small fold changes suggest this may be of limited biological
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relevance (Table 2). Expression levels of the majority of the 22 genes
were significantly associated with ER status. For the Wang, Sorlie,
and van de Vijver patient datasets, percentages associated with ER
status were 91%, 71%, and 84%, respectively. There was a very
strong statistical enrichment for ER status related genes among the
3D-signature genes (Fisher’s exact test, p= 3.11E-8, Wang dataset).
In the Wang dataset, the expression levels of 20 of the 22 signature
genes (91%) were significantly associated with ER status, while, for
the entire set of 22,283 genes, expression levels of a total of 7,424
genes (33%) were ER associated (Welch t-test with a false discovery
rate multigene correction, p,0.05). The genes that correlated with
ER status also correlated with basal/luminal status (Fisher’s exact
test p=0.011) (data not shown). The majority of the genes were
more highly expressed in ER2 breast cancers than ER+ breast
cancers. Two genes (DUSP4 and TUBG1) had the reverse pattern
and were significantly under-expressed in ER-negative tumors
(correlation analysis, p,0.05). In the Wang dataset, we found that
the highly ER-associated genes were no more likely to be good
prognostic markers than the non-ER-associated genes (Fishers exact
tests, p,0.05) (Table 1). This conclusion applied to the subsets of

ER+ tumors and ER2 tumors, as well as all patients. These
statistically significant p-values may not be biologically relevant since
fold changes were small. Genes with the most significant differences
between ER positive and ER negative tumors (e.g. ODC, CEP55,
and EPHA2 in the van de Vijver dataset), had approximately 20
percent (1.2-fold) differences in median gene expression levels. Other
genes had smaller fold changes.
To further assess the predictive capability of the 3D signature

while correcting for known clinical risk factors, we performed Cox
proportional hazard analysis. Univariable hazard ratios for poor
outcome over a period of 10 years were 5.5 (95% CI 3.0 to 12.2,
p,0.0001), 2.4 (95% CI 1.6 to 3.6, p,0.0001), and 1.9 (95% CI
1.1 to 3.2, p = 0.016), for the van de Vijver, Wang, and Sorlie
datasets, respectively (Table 3). For all of these results, 95 percent
confidence intervals exclude 1.0 and p-values (,0.05) show
statistical significance. The hazard ratios for the 3D signature
remained significant for the two larger datasets (p,0.0001 for both
van de Vijver and Wang, et al.) when a multivariable analysis was
performed to correct for ER status. In this multivariable analysis,
ER status was a significant factor in only the van de Vijver dataset

Figure 2. Kaplan-Meier curves of the individual genes that accurately predicted patient prognosis (p,0.05). A. Results for individual
genes in the dataset of Wang, et al., using patient relapse as the endpoint. B. Results for individual genes in the dataset of Sorlie, et al., using patient
survival as the endpoint.
doi:10.1371/journal.pone.0002994.g002
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(p = 0.0044), but not in the Wang (p= 0.32) or Sorlie (p = 0.41)
datasets. The smaller dataset of Sorlie, et al., may have had
insufficient numbers of patients to achieve a significant result for
the 3D signature in the multivariable analysis. This result shows
that the 3D signature accurately predicts breast cancer outcome in
both ER-positive and ER-negative tumors.
Multivariable analysis shows the overall risk of death predicted

by the 3D-signature and six known clinical factors in the dataset of
van de Vijver, et al. (Table 4). Results show that the 3D signature
was the strongest independent factor in predicting breast cancer
outcome (Hazard ratio = 4.43, 95 percent confidence interval 2.32
to 8.46, p,0.00001). Additional independent predictive factors
were age, tumor size, and ER status.

Discussion

We hypothesized that the changes in gene expression occurring
during acini formation of non-malignant HMEC in a 3D culture
model are opposite from those occurring during the development
of breast tumors with a poor prognosis. In support of this

hypothesis, we showed that genes that were expressed at
significantly lower levels in organized, growth arrested HMEC
than in their proliferating counterparts could be used to classify
breast cancer patients into poor and good prognosis groups [8].
The present study provides three independent confirmations of a
22 gene prognostic signature (3D-signature) that we previously
identified using a novel unsupervised strategy.
One of the key criticisms of gene signatures identified using

microarray technology is the lack of validation across platforms
[13,15]. Here we report that the 3D-signature predicted prognosis
in three large independent datasets (p = 1.3E-5, 0.045, and 9.4E-
10 for datasets of Wang, et al., Sorlie, et al., and van de Vijver, et al.,
respectively; Kaplan-Meier analysis). These three large datasets
represent a total of 699 breast cancer patients. There were
differences in how well the signature performed between the
datasets. Prognosis was best for the Wang and van de Vijver
datasets. Microarrays used for the Wang dataset were identical to
those of our selection study and included probes for all 22 3D
signature genes. In contrast, microarrays used for the Sorlie
dataset included probes for only 15 of the 22 genes, and some of

Table 1. Kaplan-Meier p-values for the 22 individual 3D signature genes in the Wang, Sorlie, and van de Vijver patient datasets.

Gene All patients ER + patients ER2 patients

Wang Sorlie Van de Vijver* Wang Sorlie Van de Vijver* Wang Sorlie Van de Vijver*

Cell cycle / mitosis genes

ASPM 0.0007 - ns ns - ns ns - ns

AURKA 0.0009 0.0077 0.0001 0.0062 0.067 ns ns ns ns

CDKN3 ns 0.031 0.0001 ns 0.095 ns ns ns ns

CEP55 0.0036 0.026 0.0001 ns 0.023 ns ns ns ns

CKS2 0.01 ns 0.05 ns ns ns ns ns ns

DUSP4 0.0041 ns 0.0001 0.085 ns ns ns ns ns

NCAPG ns - - 0.087 - - ns - -

RRM2 ns 0.03 0.0001 ns 0.028 0.068 ns ns ns

TUBG1 ns ns 0.05 ns ns ns 0.059 ns ns

Angiogenesis / motility genes

ACTB ns - 0.05 0.079 - ns ns - 0.041

ACTN1 0.019 ns 0.01 ns ns ns ns ns ns

EPHA2 0.0027 ns 0.05 0.011 ns 0.026 ns ns ns

FGFBP1 ns ns ns ns ns 0.049 ns ns 0.059

FOXM1 ns 0.046 0.0001 ns ns ns ns ns 0.039

SERPINE2 ns ns - ns ns - 0.092 0.0088 -

TNFRSF6B ns ns ns 0.076 ns ns ns ns 0.071

ZWILCH ns ns 0.01 ns ns ns ns ns ns

Polyamine biosynthesis

ODC1 ns ns ns ns ns ns ns ns ns

Transcription / translation genes

EIF4A1 ns ns ns 0.095 ns ns ns ns ns

TRIP13 0.0257 0.0112 0.0001 ns ns ns ns ns ns

VRK1 0.0001 0.0057 ns 0.018 0.026 ns ns ns ns

Unknown function

C1QDC1 ns ns - ns ns - ns ns -

*Data previously reported (Fournier et al., Cancer Research 2007).
ns = not significant; - = no data; bold =p,0.05.
doi:10.1371/journal.pone.0002994.t001
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these 15 probes could potentially recognize different isoforms of
the genes than those of the selection study. However, even with
these differences in probe composition, the 3D-signature accu-
rately predicted prognosis.
The 3D-signature includes cell cycle and transcription related

genes that predict prognosis in ER+ breast cancer patients. This
finding is consistent with previous studies that show that
proliferation and cell cycle genes are the strongest predictor for
relapse among ER positive patients [16]. In several previous
studies, a signature enriched in cell cycle related genes has been
reported to predict poor prognosis of breast cancer, along with a
second smaller class of genes that includes transcription related
genes. Poor prognosis in ER+ tumors in particular has been found
to be strongly predicted by over expression of cell cycle and cell
proliferation genes [12,17,18,19].
The 3D-signature also includes angiogenesis and motility genes

that are markers for prognosis in both ER+ and ER2 tumors.
Genes in this functional class of breast tumor marker genes were
also identified in other breast cancer signatures [17,20], though
the association of this functional class with ER2 tumors has not
been noted for gene signatures. Markers for ER2 tumors have

Table 2. ER association of the 22 individual 3D signature
genes in three patient datasets (Welch t-test p values with
false positive multigene correction).

Gene Wang Sorlie van de Vijver

Cell cycle / mitosis genes

ASPM 3.1e-9 - 9.2e-5

AURKA 3.6e-8 0.018 1.2e-8

CDKN3 3.8e-6 ns 0.024

CEP55 4.5e-10 ns 6.9e-10

CKS2 0.0011 3.8e-9 0.0017

DUSP4 5.3e-7 0.044 6.1e-9

NCAPG 2.4e-5 - -

RRM2 7.6e-12 0.049 2.7e-9

TUBG1 ns 0.018 ns

Angiogenesis / motility genes

ACTB 0.018 - 5.8e-11

ACTN1 2.4e-5 ns 0.027

EPHA2 1.7e-9 0.028 1.2e-10

FGFBP1 1.6e-6 - 0.00069

FOXM1 1.7e-9 0.025 3.5e-9

SERPINE2 5.1e-5 ns -

TNFRSF6B 0.0030 ns 0.0017

ZWILCH 0.0081 0.00018 0.0015

Polyamine biosynthesis

ODC1 6.7e-11 ns 5.8e-11

Transcription / translation genes

EIF4A1 0.018 0.018 ns

TRIP13 9.0e-9 0.0042 1.2e-10

VRK1 0.0061 4.2e-5 ns

Unknown function

C1QDC1 ns 0.00094 -

doi:10.1371/journal.pone.0002994.t002

Table 3. Univariable and multivariable proportional-hazards analysis of survival risk for three large independent testing sets*.

Univariable analysis Multivariable analysis#

Hazard ratio (95% CI)a p Hazard ratio (95% CI) p

van de Vijver, et al. dataset

ER positive vs negative 0.31 (0.20 to 0.49) ,0.0001 0.50 (0.31 to 0.80) 0.0044

3D signature 5.52 (2.98 to 10.22) ,0.0001 4.45 (2.35 to 8.43) ,0.0001

Wang, et al. dataset

ER positive vs negative 1.00 (0.65 to 1.54) 0.99 1.25 (0.80 to 1.95) 0.32

3D signature 2.40 (1.60 to 3.60) ,0.0001 2.51 (1.66 to 3.80) ,0.0001

Sorlie, et al. dataset

ER positive vs negative 0.69 (0.40 to 1.20) 0.19 0.79 (0.44 to 1.39) 0.41

3D signature 1.89 (1.13 to 3.17) 0.016 1.51 (0.88 to 2.58) 0.13

*Results for the datasets of van de Vijver, et al., and Wang, et al., represent 10 year Hazard Ratios (95%CI). Results for the dataset of Sorlie, et al. were calculated using all
available data, which included 5 years of follow up. The endpoint for the van de Vijver analysis was overall survival and for the Wang and Sorlie analyses were relapse.
#Multivariable analysis accounted for ER status and the 3D signature.
aCI, confidence interval.
doi:10.1371/journal.pone.0002994.t003

Table 4. Multivariable proportional-hazards analysis of 10
year survival risk*.

Hazard ratio (95% CI)a p

Age (per 10 year increment) 0.62 (0.44 to 0.88) 0.008

Tumor diameter (per cm) 1.33 (1.04 to 1.69) 0.023

ER (positive vs negative) 0.55 (0.34 to 0.90) 0.018

Lymph node status (per positive node) 1.07 (0.96 to 1.20) 0.234

Chemotherapy 0.69 (0.38 to 1.26) 0.234

Mastectomy 1.05 (0.63 to 1.73) 0.864

3D signature 4.43 (2.32 to 8.46) ,0.00001

*Results were calculated using the dataset of van de Vijver, et al. using overall
survival as the endpoint. Similar results were obtained for the same
multivariable analysis using relapse as the endpoint, 3D signature Hazard ratio
3.3 (95% CI 2.0 to 5.3), p,0.0001.
aCI, confidence interval.
doi:10.1371/journal.pone.0002994.t004
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been reported to be significantly less prevalent than markers for
ER+ tumors [19]. Some genes within this functional class
predicted prognosis for only ER+ tumors, some predicted
prognosis for only ER2 tumors, and some predicted prognosis
for both ER+ and ER2 tumors.
Since few overlaps have been found among the published breast

cancer signatures, it appears that many (thousands) of marker
genes have predictive ability in different subsets of patients. It has
been proposed that some genes may have moderate predictive
ability in many patients, while some may be ‘‘master genes’’ with
high predictive ability in as yet undefined subsets of patients [13].
When many such genes are used together, a highly accurate
predictive tool results that is accurate across a wide cross section of
breast cancer patients. The actual composition of the signature
may be less important than the fact the each signature is a set of
many semi-predictive genes. In contrast to gene signatures
identified from specific patient sets by supervised methods, our
approach is based on a well studied and biologically relevant
model system that mimics the human mammary gland. Hence the
3D-signature holds promise to include ‘‘master genes’’ of key
biological processes of cancer.
Several examples from existing literature support the hypothesis

that the 3D signature genes play important biological roles. First,
several of the genes identified have been reported to be up-regulated
in tumor cell lines, implicated in tumor growth, angiogenesis and/or
metastasis in animal models, and are under investigation for
development of novel target therapies. The EphA2 receptor tyrosine
kinase is frequently over-expressed in aggressive breast cancer and
has been associated with breast tumor growth in animal models
[21,22] and resistance to therapy with tamoxifen [23], and thus
reduction in its expression is currently being considered as a potential
target for therapy [24]. Monoclonal antibodies to down modulate
EphA2 and siRNA studies were reported to inhibit the growth of
human breast and lung tumor xenografts in nude mice and tumor
angiogenesis and metastatic progression [25]. Among the most
predictive genes in the 3D signature are aurora kinase A (AURKA)
and CEP55. AURKA is a validated therapeutic target for treatment
of cancers and there currently are small molecule inhibitors of aurora
kinases being evaluated in the clinic. CEP55 has been identified as a
regulator required for cell cycle progression and completion of
cytokinesis by loss-of-function studies and it is over-expressed in
several cancer cell lines [26]. The transcription factor forkhead box
M1 (FOXM1) has been shown to be up-regulated in a variety of
carcinoma cell lines and its expression is suppressed in terminally
differentiated cells. Its up-regulation has been shown to lead to

proliferation of tumor cells and the formation of lung tumors in
transgenic mice [27], while its down regulation has been shown to
lead to the inhibition of invasion and angiogenesis in pancreatic
cancer cells [28]. For these reasons, inhibitors of FOXM1 are
currently under investigation to develop anticancer drugs [29]. The
lesser known gene TRIP13, a thyroid hormone receptor interactor,
is a protein that interacts with hormone-dependent transcription
factors to regulate the expression of a variety of specific genes,
suggesting that it could have a relevant role in breast cancer biology
and be a target for development of novel therapeutics.
Earlier detection can benefit patient survival and treatment

options; however progress is still needed in developing therapeutic
strategies amenable to early stage disease. A focus on the
development of novel treatments targeting early disease rather
than advanced malignant carcinoma seems to be a natural next
step. The identification of key regulatory pathways that maintain
the self-limited proliferation of non-malignant cells in 3D cultures
may direct us to novel molecular targets for earlier cancer therapy.
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